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PREFACE

This report, prepared by Gregory B. Baecher of NEXUS Associates, Wayland,

Massachusetts, with assistance from D. DeGroot, and C. Erikson, under Contract

DACW39-83-M-0067, provides details for the statistical analysis of geotechnical

engineering aspects of new dam projects. It was part of work done by the US

Army Engineer Waterways Experiment Station (WES) in the Civil Works

Investigation Study (CWIS) sponsored by the Office, Chief of Engineers, US

Army. This study was conducted during the period October 1983 to September

1985 under CWIS Work Unit 32221, entitled "Probabilistic Methods in Soil

Mechanics." Mr. Richard Davidson was the OCE Technical Monitor.

The report is an introduction to practical techniques of statistical data

analysis for use in geotechnical engineering. The intended audience is the

p-acticing qeotechnical engineer with little or no background in statistics.

Readers with a developed background in statistics may find the methodological

presentation rudimentary, but may still find interest in the numerical examples

which come from actual construction projects. Two other reports were prepared

under the same contract, "Statistical Quality Control for Engineered

Embankments," (Contract Report GL-87-2), and "Error Analysis for Geotechnical -

Engineering," (Contract Report GL-87-3), in addition to a final reprort.

Ms. Miry Ellen Hynes-Griffin, Earthquake Engineering and Geophysics

Division (EEGD), Geotechnical Laboratory (GL), WES was the Contractinq

Officer's Pepresentative and WES Principal Investigator for CWIS Work Unit

32221. Geneiral supervision was provided by Dr. A. G. Franklin, Chief, EEGD, U

and Dr. W. F. Marcuson III, Chief, nL.

CommnFrder and Director of WES during the publication of this report was

COL Dwayne G. Lee, CE. Dr. Robert W. Whalin was Technical Director.
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:rATISTICAL ANALYSIS FMR GFOTECHNICAL DATA

PART I: INTRODUCTION

Backq round

Traditionally, the planning of qeotechnical site characterization and the

analysis of data which result have been accomplished by ad hoc procedures.

These rest primarily on intuition and visual inspection of data. Advances in

geotechnical testing and modeling combined with stricter regulatory oversight

have led to changes with important implications for site characterization and

data analysis. Principal among these are: (a) increased numbers and quality

of geotechnical data, (b) increased concern with quality assurance in

engineering, and (c) increased regulatory interest in the connection between

performance assessments, parameter estimates, and supporting data.

At the same time, growing experience with the use of simple statistical

methods in geotechnical engineering has provided techniques tailored to the

special needs of geotechnical practice. These methods provide means for

accomodating recent changes, and for improving the practice of geotechnical

engineering. Such statistical methods are well suited to automatic data

processing; they provide an explicit, repeatable procedure for obtaining

parameter values; and they allow quantified levels of confidence to be assigned

to parameter estimates.

Purpose

* The purpose of this report is provide potential users of statistical

methods for geotechnical data analysis with an introduction to practical

concepts, definitions, and techniques. The report is not exhaustive; it

intends to present simple, useful techniques in sufficient detail that a reader

not already conversant with statistical theory may undertake practical analyses

10



of geotechnical data. These analyses should make better, more powerful use of

data than has been possible with ad hoc procedures, and should provide

estimates of uncertainty in engineering parameters to serve as the basis for

error analysis of engineering calculations. This report complements materials

presented in "Error analysis for geotechnical engineering," (Contract Report

GL-87-3), in which the use of quantified estimates of uncertainty and error in

geotechnical modeling is discussed.

General Description of Statistical Analysis

The approach to statistical analysis of geotechnical data developed in

this report is based on summarizing a parameter value by two numbers: a best

estimate and a measure of uncertainty. The 'mean' or arithmetical average is

*used for the first; the 'standard deviation' or root-mean-square variation is

used for the second. These and other statistical terms are defined as they

appear in later sections. Importantly, the methods used in the report do not

require restrictive assumptions on the shape of probability distributions

(e.g., the assumption of Normal distributions), and as a result the report

considers probability distributions with only passing interest. The main

concept behind the approach of this report is that uncertainty or error in

geotechnical parameter estimates can be divided into four types, and the

importance of each can he analyzed individually. The ability to separately

consider each principal source of uncertainty greatly simplifies the task of

analyzing data. Once each source of uncertainty has been considered

individually, explicit rules based on probability theory are used to calculate

the overall uncertainty in a parameter estimate.

11



The four types of uncertainty in a geotechnical parameter estimate are,

(a) actual variability in the soil deposit, (b) random measurement error, (c)

measurement bias, and (d) limited numbers of tests (Fig. 1). The first two

cause the scatter so common in qeotechnical measurements. The last two cause

systematic errors which are unrelated to location. Fach of these sources of

uncertainty affects engineering calculations in its own way and as a result

should be analyzed individually. At the end, the four uncertainties are

combined to construct a statistical soil profile. The statistical profile

shows the best estimate profile of soil properties with depth, and provides

uncertainty envelopes about that profile. The statistical design profile is

* the first step in error analysis, as described in the accompanying report,

"Error analysis for geotechnical enqinc ,rinq," (Contract Report GL-87-3).

Organization of This Report

This report is organized in five parts. After the Introduction, Part II

summarizes common techniques for summarizing data using statistical

descriptions. Part III introduces techniques for modeling and summarizing the

spatial character of soil property data and the means for establishing the

amount of measurement error in observed data scatter. Part IV addresses

" systematic or bias errors in measurements and in models. Finally, part V puts

the techniques for Parts II, III, and IV together to summarize a soil profile

statistically.

[6 12
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PART II: DESCRIBING SOILS DATA

Engineering data on soils properties are usually scattered. Graphical and

simple mathematical techniques are useful in summarizing this scatter so that a

better understanding of the data can be developed. For the present purposes,

such graphical and mathematical techniques are used to obtain, (a) best

estimates of soil engineering properties, and (b) quantitative assessments of

the uncertainty or error in such estimates.

Histograms and Frequency Distributions

Histograms and frequency distributions are graphical descriptions of the

variability or scatter of data. Plotting a histogram or frequency distribution

is usually the first step in data analysis.

Histograms

A. A histogram is a diagrammatic representation of the frequency with which

measurements lie within specified intervals of magnitude. For example, Fig. 2a

shows a histogram of standard penetration test (SPT) blow count data within a

single stratum of silty alluvial sand. The intervals along the horizontal axis

of the histogram are each of the same width, and the height of the bars shows

the frequeny of data lying within each interval. Since the intervals are all

of the same width, the area of each bar is also proportional to the frequency

of data within that interval.

A histogram is a convenient way of displaying data since many important

features are immediately apparent in diagrammatic form. For example, the data

Sof Fig. 2a are seen to vary about a central peak at about q blows/ft. The data

are more or less symmetric about this peak, and data which vary suLbscantially

from the peak are infrequent. The bulk of the data lies within an interval

13
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approximately between 3 to 15 blows/ft, with extreme values ranging from 0 to

V 24 blows/ft. A symmetric distribution of data like Fig. 2a is often described

as bell-shaped.

A histogram of another set of cone pentration test data is shown in Fig.

2b. These data are not symmetric about their peak frequency. The largest

frequency occurs near the lower end of the scale, and while the frequencies

decline on both sides of the peak, they do so more slowly on the upper side,

that is, as penetration resistance increases. Such distributions are said to

be skewed.

To construct a histogram the following procedure is used:

1. Divide the horizontal axis of the graph into about 5 to

10 intervals of constant width.

2. Count the number of data having values within each

inter val1.

3. Plot this number as a vertical bar above the appropriate
interval.

* About 5 to 10 intervals are used because this number typically allows a

sufficient number of data in each interval for the observed frequencies to vary

smoothly, and yet provides adequate definition of the shape of the distribution

of data. For small numbers of data a convenient rule-of-thumb for choosing

the number of intervals isI k = 1 + 3.3 loglo n(1

in which n = the number of data values and k (rounded to the next higher

integer) =the niumber of intervals (Sturges, 1926). The choice of number of

intervals can affect the visual interpretation of data scatter. Thus, it is

14
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sometimes useful to construct more than one histogram, using a different number

of intervals on each plot in order to obtain an intuitive feel for the data

scatter. This problem is circumvented by using a frequency distribution, as

described below.

Usually, it is convenient to specify interval boundaries to one fewer

decimal places than that to which the data are measured, avoiding the problem

of where to place values falling directly on an interval boundary. When this

is not possible some consistent procedure should be adopted for deciding how to

count data which fall directly on an interval boundary. For example, any value

lying on a boundary might be automatically counted in the lower interval. Some

people prefer to allocate 1/2 unit to each adjacent interval. This is an

acceptable procedure but it leads to noninteger frequencies which may be

awkwa rd.

Frequency Distributions

A frequency distribution is obtained by changing the vertical axis from

the frequency of data within class intervals to the cumulative fraction of data

less than a particular value. The frequency distribution is a

fraction-less-than (or percent-less-than) curve. Fig. 3 shows the frequency

distribution for the SPT data of Fig. 2a.

To construct a frequency distribution the following procedure is used:

1. Arranae the data in ascending order, xl,x2,...,xi,...,xn.

2. For each value xi, calculate the frequency fi of data less

than or equal to that value, fi=i/n. For the largest value,
assign the frequency fn=n/n+1.

3. Plot the value of the data xi along the hori7ontal axis and
its corresponding cumulative frequency fi alnng the vertical
axis.

15
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The advantages of the frequency distribution are that it does not require

data to be grouped into arbitrary numibers of intervals and the fraction of

data less-than or greater-than any value can be immediately read from the

graph. The disadvantage is that the shape of the distribution of data is not

A as clearly apparent in a frequency distribution as in a histogram.

Probability Paper

Probability paper is graph paper with special grids designed such that the

cumulative frequencies of particular types of frequency distributions plot as

straight lines. Fig. 4 shows the data of Fig. 2a plotted on Normal

* probability paper. Normal probability paper causes bell-shaped distributions

(more precisely, Normal distributions) to plot as straight lines. other types

of probability paper are also available. In this report little use is made of

the mathematical shape of the frequency distributions of data. Nevertheless,

P probability papers are commonly encountered in practice and in statistical

software, and are often a convenient way to plot data.

M ean and Standard Deviation

Graphical descriptions of the variability among data are useful for

obtaining a feeling for the scatter in a particular data set, but for

engineering applications a mathematical description of data scatter is usually

needed. This is conveniently provi7ed by the mean and standard deviation. The

mean is a quantitative measure cl the central location of the scatter of

measurements along the x-axis. The standard deviation is a quantitative

measure of the dispersion of the measurements. Together, the mean and standard

% V



deviation summarize important information about the distribution of measured

values, and provide a useful description of data scatter for use in analysis.

Mean

The mean of a set of measurements xi, i=l,...,n, is the arithmetic

average,

m = n x i = "mean" (2)x n i-I

The mean is the center of gravity of the data along the X-axis. In this

report, the mean is used as the best estimate of a soil parameter because it is

neither conservative nor unconservative. In some references the mean is calledI

the expected value of x and denoted E[x], but this expression is not used

* here. In Fig. 2a the mean of the histogram of the SPT data is 8.9 blows/ft.

Standard Deviation

The standard deviation measures the variability of data about their mean.

Mathematically, the standard deviation is the square root of the sum of

squares of the difference between each measurement and the mean,

s = / n1 (x i - mx)2 = "standard deviation" (3)

V n-1 i c

For the histogram of SPT data in Fig. 2a, the standard deviation is 4.4 blows

% per ft. The standard deviation can be thought of as the square root of the

p. moment of inertia of the data about the mean. Whereas, the mean describes the

1 center of the data along the X-axis, the standard deviation describes the

spread. The mean and standard deviation are measured in the same units as the

data themselves. The denominator (n-i) is used in Eqn. 3 rather than n because

% N
6;
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the mean mx that appears in the Eqn. 3 is itself also estimated from the data.

Thus, to the extent that mx differs slightly from the real mean of x in a soil

deposit, the variations (xi-mx)2 are on average slightly smaller than the

corresponding variations about the real mean. Mathematically, the squared

variations are on average too small by the factor (n-1)/n, and thus the

denominator in Fqn. 3 corrects for this bias.

For a bell-shaped, or Normal, distribution of data the mean occurs at the

0.5 fractile. The 0.5 fractile, denoted x0 .5 , is that value of x which splits

the data into two sets, half smaller and half larger. 50% of the data are

smaller than xn. 5 . The value x0 .5 is commonly called the median. Again, for a

Normal distribution the mean plus one standard deviation occurs at the 0.84

fractile; the mean minus one standard deviation occurs at the 0.16 fractile.

This can be determined from tables of the Normal distribution which are found

in most statistics textbooks (e.g., Benjamin and Cornell, 7969). When data

plot as a line on Normal probability paper, the mean and standard deviation can

be readily estimated by fitting a line to the data and determining the values

of x which correspond to the 0.16, 0.5, and 0.84 fractiles. Denoting these

V x0 .16 , x0 .5 , and x0.84 ,

Sm x  . x. 5  (4)

x0.84 x0.16X s x 2 (5)2

In calculations it is sometimes convenient to deal with sx2 rather than

* Sx, just as in mechanics it is convenient to deal with the moment of inertia

J.

18
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rather than its square root. The square of the standard deviation is called

the variance, and is exacatly equivalent to the moment of inertia in

mechanics. The variance in the moment of inertial of the data about the mean

mx ,

V x  .. = "variance" (6)

The variance of the data in Fig. 2a is (4.4 blows/ft) 2 = 19.4 (blows/ft)2 . The

variance is measured in the square of the units of the data. If the data are

measured in blows/ft, the variance is measured (blows/ft)2. Given their

similarity to mechanical moments, the mean and variance are often called

(statistical) moments of the data. The mean is the first moment about x=0.

'.4 The variance is the second moment about x=m x . A description of soil properties

using only means and standard deviations is said to be a second-moment

description.

Coefficient of Variation

The ratio of the standard deviation to the mean, or the proportional

variability, is called the coefficient of variation,

2x = sx/mx = "coefficient of variation" (7)

The coefficient of variation of the data in Fig. 2a is x = (4.4 blows/ft/8.9

blows/ft) 0.49, and could be expressed as a percentage (i.e., 49%).

Correlation

For two or more soil properties, variations in different properties may

be associated with one another. That is, variations may n-t he independent.

For example, the water content and undrained strength of clays are known to be

associated with one another. Thus, variations in water content and undrained
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strength are not independent, they depend on one another throuoh causal

mechanical factors.

Soil properties or engineering parameters may also be associated with one

another not by a causal mechanical factor but by the way they are measured or

estimated. For example, triaxial compression tests might be performed to

estimate the effective strength parameters (c' ,t') of the Mohr-Coulomb strength

criterion. If c' and ' are estimated by fitting a line to the resulting Mohr

circles, error can be introduced by the way the envelope is fit. An envelope

drawn too flat, leads to a ' which is too small. An envelope drawn too

* steep leads to a ' which is too large. However, if an envelope is drawn

too flat, then for the envelope to still fit the data, the cohesion intercept

c' must be made larger than it should be. Conversely, if the envelope is drawn

too steep, the cohesion intercept must be made smaller than it should be to

still fit the data. Errors in the estimates of 4' and c' are associated with

one another.

The strength of association between soil parameters is expressed by the

correlation coefficient,

r 1 = Y= "correlation coefficient" , (8)
xyx

in which m x and my the means of x and y, respectively; sx and sy = the

* . respective standard deviations of x and y. The two terms within the summation

are the deviations of x and y measured in units or their respective standard

deviations. That is, they are standardized dimensionless deviates. Thus the

correlation coefficient is a non-dimensional measure of the degree to which two

parameters vary together.
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The range of rXY is -1r xy<+1: rxy= +1 indicates a perfect linear relation

between x and y having positive slope, rxy = -1 indicates a perfect linear

relation between x and y having negative slope, rxy = 0 indicates no relation

between x and y. When rxy = 0, x and y are said to be independent and the

scatter diagram of y plotted against x shows no trend.

If the variations of x and y are not normalized by their respective

standard deviations, the covariance is obtained,

C 1 E (xi-m x )(Yi-my) = "covariance" (9)

x,y9 n

The covariance is not dimensionless. From Eqns. 8 and 9,

. x y (SxS y ) r . (10)

Fig. 5 shows a scatter plot of compaction control data collected during

the construction of an engineered fill. Compaction water content is plotted

along the X-axis; compacted dry density is plotted along the Y-axis. Each

point corresponds to one test in which both water content and dry density were

measured. As should be expected, water content and dry density are, on

average, inversely related to one another. The correlation coefficient for the

data of Fig. 5 calculated using Eqn. 8 is rxy = -0.7.

For comparison, Fig. 6 shows scatter plots of x,y having various

coefficients of correlation. When rx >0 the data cloud slopes upward to the

right. An intuitive feel can be obtained by thinking of a vertical line

through rx and a horizontal line through my dividing the scatter diagram into

four qnadrants. In the upper right quadrant both (xi-m x ) and (yi-m y) are

positive, thus their product is positive. In the lower left quadrant both
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(xi-m x ) and (yi-my) are negative, thus again their product is positive. In the

other two quadrants the products are negative. Therefore any cloud of data

which has most of its points in the upper right and lower left quadrants has an

r rXY>0. Conversely, any cloud with most of its points in the lower riqht and

!.*1 upper left quadrants has an rxy<0. If the points fall equally in all four

quadrants, rxy 0. It is important to note that the correlation coefficient

is a measure of linear association. Two parameters may be deterministically

related, but non-linearly, and have an rxv other than *1.

means and Standard Deviations of Calculated Parameters

Means and standard deviations are used above to describe best estimates

and uncertainties about measured properties. Correlation coefficients are

.- " -used to describe association among properties or among uncertainties in

properties. For engineerinq analysis, measured properties are sometimes

transformed mathematically to obtain desired input parameters for engineering

models. Deformation might be used to calculate elastic moduli, or in situ

stresses and measured strengths might be used to calculate normalized soil

properties.

The mathematics needed for relating a second-moment description of soil

properties, loads or other measurements to a corresponding second-moment

description of calculated results are relatively uncomplicated. Some equation

is chosen for calculating the results of interest. For example, to calculate

elastic modulus from stress and strain measurements the equation would be

F = in which 17 = stress and = strain. Next, means, standard deviations,

and correlation coefficients are evaluated for all the input parameters. In

the example, the input parameters would be stress and strain, and the
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corresponding statistical moments would be m, m, sa, sc, and r0 E. Then these

means, standard deviations and correlation coefficients are used in conjunction
V

K, with the equation to determine resulting means, standard deviations, and

correlation coefficients (if applicable) on the calculated result(s). In the

example, the result is the scalar value E.

Mean of a Calculated Parameter

Operationally, mean soil properties are propagated through an equation
..

%.
using3 a first-order approximation. This is a linear approximation in the

vicinity of the best estimates of the soil properties. Mathematically, the

0 calculation of some result y based on a soil parameter x can be expressed as a

function,

y = g(x) (11)

Ry tak'ng a Taylor's series expansion of q(x) at the point mx and then

truncated all but the first two (i.e., linear) terms, the tanqent at mx is

obtained (Fig. 7). For most qeotechnical purposes this linearization is

sufficiently accurate. For stronily nonlinear cases, other methods are

available. These are discussed in the report, "Error analysis for qeotechnical

engineertnql," (Contr,):t Report 1,-R7-3;. Applyinci ru'iiment..ry prbitbilit"

theory leads to the convenient result,

- q( ) , (12)0 '/

in which -n=iiatn s firctrorrbnr approximation. In words, the mean or best

q t iPae * )f the r,-'sit v i:. t'ie fnct ion o- the moan or best estimato of

the nlramrtor x. This i:7 th- --),-7-n etermini7tir- solut inn, tivino the

.5,
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best-estimate or mean soil property as input. In the example above

mE L mm, (see Plate 1).

Standard Deviation of a Calculated Parameter

By similar reasoning, standard deviatons on input soil propertiEs x may

also be propagated through an equation y=g(x) to find a corresponding standard

deviation on the calculated parameter y. The first-order approximation leads

to the relation

s j_ (d ) s x  ,(13)y d

in which the derivative dy/dx can be thought of as an influence factor. In

words, the standard deviation of the prediction y is the product of the

standard deviaton of the parameter x and an influence factor equal to the

derivative of y with respect to x. For modulus calculated from an uncertain

stress but known strain, sE " (dE/da)sa. The relation is exact when g(x) is

linear.

When the prediction y depends on a set of parameters, x ={xl,...,xn}, the

equivalent forms of Eqn. 12 and 13 are,

MY " g(m x .... mx  , (14)
1 n

S dy dy (15)
dxi dxj xi,x.

Note, when the xi,xj are independent, Cx 'x =0 for itj and Cx, x = s x =V x  for

i j i
i=j, thus,
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Vy- [dy ]2 Vx (16)
dx i

The example calculation of modulus from both an uncertain stress and an

uncertain strain is carried out in Plate 1. Two special cases deserve note

because they are common in practice and lead to simple results. For the case

in which y is a linear combination of a set of independent parameters y = Eaixi

the variance of y is exactly,

Vy = E ai2 Vxi (17)

For the case in which y is a power function (product) of a set of independent

parameters, y =i~ixiai the coefficient of variation of y is approximately,
i=11

+Q 2  = E (1+ai 2 ,) 2 ) (18)
1

%which for small coefficients of variation (e.g., less than 30%) reduces to,

Q2 y = Z ai2 Q 2xi. (19)

Regression Analysis

When two soil properties or parameters are associated with one another,

* their correlation coefficient can be used to predict one property or parameter

from the other. This is done with regression analysis. Reqression analysis

is used to fit lines or curves to data. For example, reqression analysis can

he used to estimate undrained strength of a saturated clay from water content.

The common criterion for fitting trend lines or curves to data is by

minimizing the sum of squared residuals off the trend. This is called the"p



least-squares fit. The cone penetration resistance data shown in Fig. 8 appear

to increase more or less linearly with depth. Mathematically, this trend in

the data can be expressed as,

y = a+bx (20)

-. in which y = undrained strength, x = log water content, and a and b are

constants. The constant a is the intercept at x = 0; b is the slope.

The problem of trend fitting is to estimate the coefficients a and b from

a set of n data pairs (yi,xi) such that the resulting trend line is 'best.'

Under the least-squares criterion a and b are estimated such that the sum of

the squared residuals in the y-direction, ui=[yi-(a+bxi)] 2 , is minimized. The

.y values of a and b which minimize the sum of squared residuals provide the best

prediction of y for a given x, and can be shown to be (Benjamin and Cornell,

* . 1979),

- ( x 2 )(L)( xi)xiYi (21)

n (Exi
2 ) - (Exi) 2

n(Ex ) - (Exi)(ExiYi)

b - i 1 (22)

n(Exi
2 ) - (Exi)

2

The variance of the residuals is

V1 -=-- [yi - ( )+bxifl2  
(23)

n-2

This best fitting line to the data of Fig. 8 is shown in the Fig. The two
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envelopes about the line are one standard deviation su = VVu,

upper envelope: y =a + x+ s u  (24)

lower envelope: y = a + bx - s u  (25)

In regression analysis the best fitting line is chosen to be that which

minimizes squared deviations of data in the y-direction (i.e., vertically).

This is the line which gives the best estimate of y for a known value of x. if

the reverse prediction were desired, that is the best estimate of x for a known

value of y, then a different regression line would give the best result. To

predict x from y the best line is that which minimizes squared deviations of

data in the x-direction. This is found by interchanging x's and y's in Eqns.

20 through 23.

Non-linear trends are fit to data in much the same way as lines are,

Typically, a direct least squares fit is used, sometimes after a

transformation of the data to fit a linear model. For example, exponential or

power functions can be transformed through the logarithm,

y = a xb (26)

ln y = ln a + b ln x (27)

and then a linear regression fit to iny:lnx. This is a common approach,

although statisticians usually warn that a transformation of data such as this

implicitly alters some statistical assumptions underlying regression analysis

(Snedecor and Cochran, 1980). For example, with linear regression analysis the

scatter of the data about the best fittinq line is assumed to be the same all

along the line. If regression analysis is applied to the logarithm of the data
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and the same equations 21 and 22 are used to estimate reqression coefficients,

then the scatter of the logarithm of the data, not the data themselves, is

implicitly assumed to be the same all along the line. In many--but not

all--cases the transformation of a non-linear relation to a linear one causes

few difficulties.

Shortcut Estimates

In a number of situations faced in the field, quick but only approximate

estimates of means, standard deviation, or correlation coefficients are desired

from limited numbers of data. Shortcut techniques are available for this

purpose. These provide savings of time and effort while often causing only

minor losses of precision.

Shortcuts for Estimating the Mean

An easy, quick, and often good estimate of the mean can be obtained from

the median. The median is the middle value of a data set. It is that value

which is larger than half the measurements and smaller than the other half.

For example, if, say, five data are listed in ascending order 6,9,10,12,15, the

median is 10. For an even number of data, say 6,9,10,12,15,16 the difference

between the two middle data is halved to give the median, that is (10+12)/2=11.

For data scatter which is symmetric about its central value and for small

* numbers of data, the sample median is actually a good estimate of the mean. On

the other hand, if the data scatter is asymmetric--for example, if there are

many small values and a few large values--the sample median is not a good

estimator of the mean.

- A second shortcut for estimating the mean is by taking one-half the sum

of the largest and smallest measured values, (1/2)(xmax + xmin). This
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estimator is sensitive to the extreme values in a set of measurements, and

thus fluctuates considerably. It is not a good shortcut estimator and should

only be used with caution.

Shortcuts for Estimating the Standard Deviation

A useful estimator of the standard deviation from small numbers of tests

is the sample range wx=Ixmax-Xminl. The range is the span of data from

largest to smallest. Like the standard deviation, the range is a measure of

* dispersion in a set of data. However, the relationship between the standard

deviation and the sample range, on average, depends on how many tests are made.

To obtain a best estimate of sx from the range of data wx a multiplier Nn is

used which depends on sample size (Table 1). The best estimate of the standard

deviation is sx  NnWx (see Plate 2).

As for the sample median, the range is a good estimator of the standard

deviation for small n and symmetric data scatter. Even for modest n it remains

fairly good. However, for asymmetric data scatter the range, which is strongly

affected by outliers, is not a good estimator of the standard deviation.

Fortunately, with the notable exception of hydraulic parameters such as

permeability, most geotechnical data display symmetric scatter. In the case of

hydraulic permeability data a logarithmic transformation usually makes the data

scatter symmetric, and again the median and range become convenient
U

estimators.

Shortcuts for Estimating the Correlation Coefficient

Calculation of correlation coefficients by Eqn. 8 can he tedious. A

simple and quick approximation is obtained graphically from the shape of the

scatter plot of y vs. x. The method works well whenever the outline of the

scatter plot is approximately elliptical, and works even with small numbers of

wI
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data. rising Chatillon's (1984) term and procedure, this is called the balloon

method:

* STEP 1: Plot a scatter diagram of y vs. x.
STEP 2: Draw an ellipse (balloon) surrounding all or most of the

points on the plot.
STEP 3: Measure the vertical height of the ellipse at its center, h,

and the vertical height of the ellipse at its extremes, H.
- STEP 4: Approximate the correlation coefficient as: r.y V1 - (h/H)2

An example of the method is shown in Fig. 9. For these data the balloon method

gives a correlation coefficient of 0.81, whereas the correlation coefficient

calculated by Eqn. 8 is 0.83. Empirically, the method works well for r y>0.5.

0 Shilling (1984) has suggested a similar method for approximately

1W %estimating the correlation coefficient. The principal difference from

Chatillon's method is that the data are normalized by their standard deviation

before being plotted:

STEP 1: Plot a scatter diagram of (y-my)/sx vs. (x-mx)/Sy.

STEP 2: Draw an ellipse surrouinding all or most of the points on the
plot.

STEP 3: Measure the length of the principal axis of the ellipse

pa, having positive slope, D, and the length of the principal
axis of the ellipse having negative slope, d.

STEP 4: Approximate the correlation coefficient as rxy , (D2-d2)/(D2+d2).

This methods works about as well as Chatillon's. For the data of Fig. 9

Shilling's method gives rxy 0.80.
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Table 1
Multiplier for Estimating Standard Deviation from Sample Range

(from Snedecor and Cochran, 1980)

sx Nn ("max -xmin)

n Multiplier N. ~ n Multiplier N

2 0.886 12 0.815
3 0.591 13 0.300

4 0.486 14 0.294
5 0.430 15 0.288

6 0.395 16 0.283
7 0.370 17 0.279

8 0.351 18 0.275
9 0.337 19 0.271

10 0.325 20 0.268

11 0.315

-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --I- - -

Table 1. Multiplication Factors for Fstirnatinq Standard Deviation
from The Panqe of Samnple Data (After Snedecor and Cochran,



PLATE 1

SUBJECT: Error analysis of modiilus calculation from laboratory data.

PROBLEM: Calculate constrained modulus from laboratory measurements of

stress and strain

SOLUJTION:

DATA: Initial stress ao  60 psi 3O0 = 2 psi
Stress increment Aa = 5 psi 3AO = 0.5 psi

0 Measured strain E = 0.096 se = 0.01

BEST ES'CIMrATE .F CONSTRAINE) MODULUS:

F: =o/

mE = malm,

. 5 ;si / 0.096 = 52 T)si.

TUNCERTAINTY (STATNDARD DEVIATION) OF MODULUS:

sE -" (dE/da) 2 sAO 2 + (dEide) 2 s£
2

, (1,/ )2  sAa 2  + (-a/F 2 ) 2  SE2

= (1/0.096)2 (0.5 psi) 2  + (-5 psi/0.096 2 )2  (0.01)2

(7.5 psi)
2

=2 (7.5
' ""' ~~-52+7._ m, i -- -

5±0. -j -"Wo

St res,.
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PLATE 2

SUBJECT: Shortcut estimates of summary parameters.

A] DATA:
Test Number Measured Strength

(kPa)

1 38

2 51

3 43

4 39

5 48

6 45

7 42

8 45

9 49

BI ESTIMATE MEAN:

1y Equation 2 Shortcut Method Using Median

mx = - x mx = median of xi
n

= 45 kPa

= -- (400 kPa)

= 44.4 kPa

C] ESTIMATE STANDARD DEVIATION:

By Equation 3 Shortcut Method Using Range

Sx= 1 (xi-mx) 2  w = (Xmax - Xmin)

= 51 - 38 kPa

= 13 kPa

=4.2 kPa s x  Nn w n

From Table 1, N9 = 0.337

= (0.337) (13)

= 4.4 kPa
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Figure 1. Sources of Error or Uncertainty
in Soil Property Estimates.
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PART III: SPATIAL VARIATION AN DATA SCATTER

- Soils are geological materials formed by weathering processes and, except

for residual soils, are transported by physical means to their present

locations. They have been subject to various stresses, pore fluids, and

physical and chemical changes. Thus, it is hardly surprising that the physical

properties of soils vary from place to place within resulting deposits.

The scatter observed in soil data comes both from this spatial variability

and from errors in testing. Each of these exhibits a distinct statistical

signature which can be used to draw conclusions about the character of a soil

deposit and about the quality of testin,.

Part 111 presents the tools required to interpret the structure of spatial

variation, and to draw conclusions about the impact of spatial variation on

engineering calculations.

Trends and Variations About Trends

In Part II, means and standard deviations were used to describe the

variability in a set of soil property data. These are useful measures, but

they combine data in such a way that spatial information is lost. To describe

the variation of soil properties in space, additional tools are needed.
.1

Consider the two sequences of hypothetical measuremen's shown in Figs. 10a

and 10b. Presume that each measurement was made at the sare elevation, one in

each or nine consecutive borings along a line. These two sets of data have the

same mea-. ind standard deviation, but clearly reflect different soil

conditions. The first data exhibit a distinct horiznnta, trend, the second are

errati;. This difference cannot be inferred from the me, and standard

deviation alone, for they are the same in both cases.

In -inciple, the spatial variation of a soil deposit ran he characterized

I4-W...,. .
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in detail, but only if a large number of tests is made. In reality, the number

of tests required far exceeds that which would be practical. Thus, for

engineering purposes a simplification is introduced--that is, a model--within

which spatial variability is separated into two parts: M) a known

deterministic trend, and (ii) residual variability about that trend. This

model is written,

K.

xi = ti  + ui, (28)

in which xi is the soil property at location i, ti is the value of the trend at

i, and u i is the residual variation. The trend is characterized

deterministically by an equation. The residuals are characterized

statistically, by a mean, standard deviation, and something statisticians call

an autocorrelation function. Rather than characterize soil properties at every

point, data are used to estimate a smooth trend, and remaining variations are

described statistically.

The residuals are characterized statistically because there are too few

data to do otherwise. This does not assume soil properties are random; they

are not. While statistical techniques provide a convenient way to describe

"" what is known about spatial variation, one has always to be wary that grouping

data together does not mask a real and crutial "geological detail."

Estimating Trends

Trends are estimated by fitting well-defined mathematical functions
1.

(i.e., lines, curves, or surfaces) to data points in space. The easiest way

to do this is by regression analysis as outline in Part IT. For example, Fig.

11 shows maximum past pressure measurements as a function of depth in a deposit
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of Gulf of Mexico clay. For geological reasons the increase of maximum past

pressure with depth is expected to be linear within this homogeneous stratum.

Data from an overlying dessicated crust are not shown.

The equation for the trend of maximum past pressure 0", with depth z isb ", vm

o' =a + bz + u (29)
vm

in which a and b are regression coefficients (intercept and slope), and u =

residual variation about the trend. Applying Eqns. 21 and 22 to the data

leads to

a 3sf (30)

b 0.06 ksf/ft (31)

for which the corresponding trend line is shown on Fig. 11. For data analysis

purposes, the regression line mn ' = 3 + 0.06z is the best estimate or mean of

the maximum past pressure as a function of depth.

Residuals About Trends

Residual variation not accounted for by the trend is characterized by a

standard deviation or variance. Py the procedure through which the trend is

-a, fit, the rcsiduals must have zero mean. The variance of the residuals is

calculated by Eqn. 23 to be Vu = lksf 2 . This is the variability of Gvm'

unexplained by the trend line. Plus and minus one standard deviation bounds

with depth are shown in Fig. 11. The standard deviation sU is the uncertainty

in maximum past pressure at any elevation. This is the

uncertainty in ;' at a point in the soil deposit caused by modeling spatial
a vnm

.. variation with a smoothly varying trend, here the line of Eqin. 2q. Presulmably,

['-a
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the standard deviation of the residuals is the same everywhere aloni the line.

This is an assumption of the least squares fittinq procedure. TIsually this

assumption is qood, but it can be relaxed if necessary (Johnson, 1 6 0 ).

Another assumption in fitting trends is that residual variations are

unrelated (i.e., independent) from one place to another. In fact, this is

seldom the case for geotechnical data. Fig. 12a shows residuals which have

been artificially generated to be independent from one to another. Fig. 12b

shows residuals typical of most soil data. Inspection shows a difference in

character. The first set appears 'erratic;' the second, 'wa -y.'

The waviness of residual soil data reflects spatial structure that is

ignored in the regression analysis. If a measurement at depth i in the

* profile lies above the averaqe trend with depth, as a qeneral rule

measurements at adjacent depths also lie above the trend, and vice versa.

This is called 'autocorrelation.' The longer the apparent 'wave length' of

the residuals the farther autocorrelation extends.

More forma-ly, autocorrelation is the property that residuals off the mean

trend are not statistically independent, and that the degree of association

among them as measured by the correlation coefficient depends on their relative

55 separation in space.

Correlation was introduced in Part II. Correlation is the property that,

* on average, two variables are associated with one another. Knowing the value

., of one provides information on the value of the other. The strength of such

I, association is measured by a correlation coefficient, ranging between plus and

' ~ minus one.

In the same way that two variables of different types can he related

(e.g., water content -nd undrained strength), so too can values of the same
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variable at different locations. For example, Fig. 13, shows standard

-. penetration test (SPT) blow counts as a function of depth. In the horizontal

direction these blow counts have an approximately constant mean, therefore

detrending is not needed. In Figs. 14a,b,c the blow count data are plotted

against one another. The horizontal axis records the blow count at location i;

the vertical axis records the corresponding blow count at a location separated

by ' from location i. When ' is large as in Fig. 14c, the correlation between

u, and ui+c is slight. However, as ' becomes smaller, as in Fig. 14a, the

correlation increases. As "+0, naturally, the correlation approaches +1.

Plotting the correlation coefficient so obtained as a function of separation

distance gives the autocorrelation function, denoted Rx(6). Plotting the

correlation coefficient multiplied by the data variance (i.e., the covariance

of Equation 9) gives the autocovariance function, denoted Cx(5). The
"a '

autocovariance is shown in Fig. 15a.

The effect of correlation structure on residual variation can be seen in

Fig. 16 in which four cases are sketched schematically. Spatial variability

about a trend is characterized by variance and autocorrelation. Large

variance implies that the absolute magnitude of the residuals is large; large

autocorrelation implies that the 'wave length' of variation is long.
,

Trends vs. Residuals

As can be seen from the preceding section, the division of spatial

• variation into a trend and residuals about the trend is an artifact of

analysis. Ry changing the trend model fit to data, for example, by replacing a

linear trend with a polynomial, the variance and autocorrelation function of

the residua]7 can be changed almost arbitrarily. From a practical view the

selection of a trend line or curve is in effect a decision on how much of the
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data scatter to model as a deterministic function of space, and how much to

treat statistically. Dividing spatial variability into a deterministic part

and a statistical part is a matter of practicality. Prudence requires that

each datun be judged for what it might say about a soil deposit, but

*engineering analysis requires models of soil properties for making predictions.

As a rule of thumb, trend surfaces should be kept as simple as possible

without doing injustice to a set of data or ignoring the geologic setting. The

problem with using trend surfaces that are very flexible, as for example high

order polynomials, is that the number of data from which the parameters of

those equations are estimated is limited. The more parameter estimates that a

%- trend surface requires, the more uncertainty there is in the numerical values

of those estimates. Uncertainty in regression coefficient estimates increases

rapidly as the flexibility of the trend increases. Uncertainty in regression

coefficients is discussed in more detail in Part IV.

Autocorrelation and Autocovariance

This section presents a more mathematical treatment of autocorrelation and

autocovariance. If xi = ti + u i is a continuous variable and the soil deposit

is zonally homogeneous, then at locations i and j, which are close together,

the residuals ui and uj should be expected to be similar. That is, the

*variations reflected in u i and uj are associated with one another. When the

locations are close together, the association is usually strong. As the

locations become more widely separated, the association usually decreases. As

the separation between two locations i and j approaches zero, u i and uj become

the same, the association becomes perfect. Conversely, as the separation

becomes large, ui and uj become independent, the association becomes zero.

V This spatial association of residuals off the trend ti is summarized by a
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mathematical function describing the correlation of ui and uj as the separation

increases. This description is called the autocorrelation function. In

concept, the autocorrelation function is a mathematical way of summarizing the

correlations shown in the scatterplots of Figs. 14a,b,c. Mathematically, the

autocorrelation function Rx(,) is

RxC ) = (n-_k1  Z (x)-t j =_ - "autocorrelation function" , (32)4'.S
x  "S x

in which n6 = the number of data pairs having separation distance 5, and k =

the number of coefficients needed to define the trend model (e.g., the

parameters a and b in Eq. 29). Rx(6) expresses the correlation of two

residuals off the trend surface as a function of their separation distance. By

definition, the autocorrelation at zero separation distances is Rx(O)=1.0.

Empirically, for most soils, autocorrelation decreases monotonically to zero as

6 increases.

If Rx(S) is multiplied by the variance of the residuals V,, the

autocovariance function is obtained, as shown in Fig. 15,

Cx(6 ) = Rx(6 )Vu = "autocovariance function" (33)

The relationship between the autocorrelation function of Fqn. 32 and the

autocovariance function of Eqn. 33 is the same as that between the correlation

coefficient of Eqn. 8 and the covariance of Eqn. 9.

Consider the site shown in Fig. 17 which overlies an hydraulic bay fill.

SPT data taken in the silty fine sand between elevations +3 and -7m show little

if any trend horizontally, and so a constant trend at the mean of the data is

a.s " assuned. Fiqj. 19 shows the hirtnqram of SPT data. Figj. 10 shows

autocovariance finctionn in thoI horizontal direction eftimated for three

intervals of elevation. At short separation distances the data show distinct

N1'



association, i.e., correlation. At large separation distances the data exhibit

essentially no correlation.

In natural deposits, correlations in the vertical lirection extend to much

shorter distances than in the horizontal direction. 1\ ratio of about one to
. "...

ten for these correlation distances is common. !orizontalIv , autocorrelation

may be isotropic (e.g., Rx(S) in the north-south direction is the same as

Rx(S)in the east-west direction) or anisotropic, dependini on geologic history;

however, in practice, isotropy is often assumed. Also, autocorrelation is

typically assumed to he the same everywhere within a deposit. This assumption,

called stationarity, is equivalent to assuming that the deposit is

statistically homogeneous.

It is important to emphasize that the autocorrelitinn function is an

artifact of the way soil variability is separated between a 'trend, and

'residuals.' Since there is nothing innate about the chosen trend ti, and since

changinq the trend changes Px( ), the autocorrelation function reflects a

modeling decision. The influence of changing trends on Cx( ) is illustrated in

Figs. 20, 21 and 22, showing data analyzed by Javette (1983). Pig. 21 shows

autocorrelations of water content in San Francisco Pay Mud within an i.. -erval

of 3 ft. Fig. 22 shows the same autocorrelation function when the entire site

is considered. The difference comes from the fact that in Fig. 21 the mean

• trend is taken locally within the 3 ft. interval. In Fig. 22 the mean trend is

taken globally across the site. The schematic drawing in Fig. 23 sugqests why

the autocorrelations should differ.

• "'Autocorrelation can be found in almost all spatial data which are analyzed

using a model of the form of Enn. 2R. For example, Fin. 24 shows the

autocorrelation of joint (i.e., rock fractujre) densfitv in a -ppor PorPhrv
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deposit; Fig. 25 shows the autocorrelation of water content in the compacted

clay core of a rock fill dam; Fig. 26 shows the autocorrelation of cone

-* penetration resistance in North Sea Clay. In mining, the importance of

-- 
" autocorrelation to ore reserve estimates has been recognized for many years.

In mining "qeostatistics" a complimentary function to the autocorrelation

function, called the varioqram (Matheron, 1971), is more commonly used to

express the spatial structure of data. The variogram requires a less

restrictive statistical assumption on stationarity than the autocorrelation

function requires and is therefore often preferred for estimation problems. On

the other hand, the varioqram is sometimes more difficult to use in engineering

analyses, and thus for qeotechnical purposes the autocorrelation is more

commonly used. In practice, the two ways of characterizing spatial structure

are quite similar.

Estimating Autocovariance and Autocorrelation

This section considers only a straightforward and often used approach to

estimating autocovariance and autocorrelation, the 'moment estimate.' For more

detailed discussion of statistical aspects of estimating Cx(), including more

efficient estimators, see Appendix A.

* Consider the sir:Dle case of measurements made at equally spaced intervals

'C.'. alonq a line, as for example in a boring. Presume that the measurements x =

" X1,x ire unaffected IW measurement error. The autocovariance of the

0. T".,Cei]urelent. i t qporotien is,

?1?1

-.-. c ( ) ( xi-t )(, + -tj 4 .. 1 (34)
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2 (u )(Ui+ ) (35)~~n-2 1 ( i+

This autocovariance is called the 'sample autocovariance, ' and it is used as an

estimator of the real autocovarianc_ at separation distance 6. The real auto-

covariance is that which w-rid be obtained if the true values of soil proper-

ties at every point in s: *e were known. The general expression of the sample

autocovariance for any arbitrary distance 6 is,

C (6) I (xi-ti)(xi+5-ti+6) (36)
x n6 -k

S1 (ui)(ui+6) (37)

4.n6-k
P ".

in which n6 = the number of pairs of data at separation distance 6, and k = the

number of parameter estimates required for the trend. For n uniformly spaced

data on a line with constant-mean trend, n6 = n-6 (because there are n- 6 pairs

of data with separation distance 6) and k=1 (because only one coefficient is

needed to define a constant mean).

In the general case, measurements are seldom uniformly spaced and, at

least in the horizontal plane, seldom lie on a line. For such situations the' sample autocovariance can still be used as an estimator, but with some

alteration. The most common way to accomodate non-uniformly placed

measurements is by dividing separation distances into bands, and then taking

the averages of Eqn. 36 within those bands (Fig. 27). This introduces some

bias to the estimate but for most engineering purposes it is sufficiently

accurate.

6S
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Measurement Noise

Random measurement error is that part of data scatter attrinutable to

instrument or operator induced variations from one test to another. This

variability may sometimes increase a measurement and sometimes decrease it, but

its effect on any one, specific measurement is unknown. As a first

approximation, instrument and operator effects on measured properties of soils

can be represented by a frequency diagram as shown schcatically in Fig. 28.

In repeated testing--presuming that repeated testing were possible on the same

specimen--measured values differ. Sometimes the measurement is higher than the

real value of the property, sometimes it is lower, and on average it may

systematically differ from the real value. The systematic difference between

the real value and the average of the measurements is said to be measurement

bias, while the variability of the measurements about their mean is said to be

" random measurement error.

Sources and Character of Random M4easurement Frror or Noise

Random errors enter measurements of soil properties through a variety of

sources related to the personnel and instnments used in soil investigations

or laboratory testingj.

Operator or personnel errors arise in many types of measurements where

reading scales is necessary, personal judqement is needed, or operators affect

the mechanical operation of a piece of testinq e'iiipment (e.g., SPT hammers).

In each of these cases operator differences have systematic and random

components. One per;nn, for oxamp po, may consistently read a gage too high,

S another too low. Tf repniirI t- rake a series of replicate measurements, a

single iniivi'iual may report ,rnmmhr2 which viry one from the other over the

. .
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series. Figure 29 shows histograms of strike and dip measurements made by many

people on the sane rock joint, usingi the same Brunton compass.

Such variability is common and widely recognized, and as soil testing

moves to more and more automated procedures, this operator variability will

decrease. With hand operated field vane devices an operator may unconsciously

vary the rate of torque from one test to another, thereby influencing measured

undrained strengths. With an automated vane such variability is lessened.

Naturally, operators also sometimes make mistakes. If these mistakes are small

and not easily identified by inspection, they too become random measurement

errors.

Instrumental error arises from variations in the way tests are set up,

loads are delivered, or soil response is sensed. The separation of measurement

errors between operator and instrumental causes is not only indistinct, but

also unimportant for most purposes. In triaxial tests soil samples may be

positioned differently with respect to loading plattens in succeeding tests.

Handling and trimmng may cause differing amounts of disturbance from one

specimen to the next. Piston friction may vary slightly from one movement to

another, or temperature changes may affect fluids and solids. The aggregate

result of all these variables is differences between measurements that are

unrelated to the soil properties of interest.

Assignable causes of minor variation are always present because a very

lamre nurmber of variables affect any measurement. One attempts to control

those which have important effects, but this leaves uncontrolled a large number

which individually have only small effects on a measurement. These assignable

caliss of variation if not identified may influence the precision and possibly

th,- accuracy of measurements by biasing the results.
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For example, hammer efficiency in the SPT test strongly affects measured blow

counts. Efficiency with the same hammer .an vary by 50% or more from one

blow to the next (Kavazanjian, 1983). Hammer efficiency can be controlled,

but only at some cost. If uncontrolled, it becomes a source of random

measurement error and increases the scatter in SPT data.

Models for Measurement Error

Random measurement errors are ones whose sign and magnitude cannot be

predicted, they may be plus or minus. Typically, random errors tend to be

small and they tend to distribute themselves equally on both sides of zero.

4 Measurement error is the cumulative effect of an indefinite number of small

'elementary' errors simultaneously affecting a measurement.

The common model of measurement error is,

z = x-e , (38)

in which z is the measurement, x is the soil property being measured, and e is

a random error of zero mean. Were systematic errors present, the mean of e

would differ from zero.

An important property of e in Eqn. 38 is that it is asiumed statistically

independent from one measurement to another and to have the same mean (i.e., 0)

* and variance Ve for each measurement. The value e takes or at one measurement

*is assumec' to be unrelated to the value it takes on at any other. This has

importait practical implications; for example, it means tlmt if many

measure.tent are averaged together to estimate a property, measurement noise

averages 'ut.

Pandom measurement error can he estimated in a variety of ways, some

direct anl some indirect. As a general rule, the direct techniques are
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difficult to apply to the soil measurements of interest to geotechnical

engineers. Nevertheless, direct techniques provide insight into the nature of

random errors. Indirect methods, on the other hand, are generally more

practical.

Direct Estimation of Measurement Noise

The traditional way of estimating random measurement error is by

replicate testing. The sane property is measured repeatedly on the same

- specimen and the results compared. An example was shown in Fig. 29 with

replicate measurements of joint strike and dip. Presumably, the property

0 being measured does not change from test to test, so the variability observed

in test results comes from random errors.

Replicate testing is a simple, direct, and accurate way of establishing

random measurement error. Unfortunately, it is seldom of use because the

properties engineers are most interested in are measured destructively.

Performing the same test on different specimens, no matter how closely together

they were sampled in the field, always leaves unanswered how much of the

variability is due to measurement and how much to real differences in the

soil.

Indirect Estimation of Measurement Noise

Indirect methods for estimating Ve usually involve correlations of the

property in question either with other properties such as index tests, or with

* .. , ~ itself througjh the autocorrelation function. The easiest and most powerful

methods involve the autocorrelation function, Combining Eqns. 28 and 38,

data are represented as
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z i = ti + ui + ei  (39)

The autocovariance of z in Eqn. 39, after the trend has been removed, becomes

Cz( 6 ) = Cx(6) + Ce(6) (40)

in which Cx(6) is from Eqn. 33, and Ce(S) is the autocovariance function of e.

Eqn. 40 can be verified by substituting zi for xi-t i in Eqn. 32 and

* algebraically rearranging. Since ei and ej are independent except for i=j, the

autocovariance function of e is a spike at 6=0 and zero elsewhere. Thus, Cz(6)

is composed of two functions as shown in Fig. 30. By extrapolating the

observed autocovariance function to the origin, an estimate is obtained of the

fraction of data scatter that comes from random error. For the data of Fig.

31, Ve 0.5V z . In the "geostatistics" literature this is called the nugget

effect.

For the field vane data of Fig. 32, the random measurement error

contribution to data scatter is about 20 kPa 2, or 40% of the variance. Fig.

33a shows the horizontal autocovariance function of the data in a Fig. 32a.

Fig. 33b shows the vertical autocovariance function. These data are analyzed

by a different and more powerful procedure in Appendix A to yield approximately

the same estimate. Fig. 34 shows the vertical autocorrelation of cone

penetration resistance data in a copper porphyry tailings ombankment. Here the

measure,nt error is very small.

The importance of random measurement errors is well illustrated by a case

involving a large number of shallow footings placed on approximately ten meters

of uniform sand. The site was characterized by Standard Penetration blow count

measure:ients, predictions were made of settlement, and settlements were

subsequently measured (Hilldale-Cunninqham, 1971).

C) 7

e. .. e .-e-



Inspection of the SPT data and subsequent settlements reveals an

interesting discrepancy. Since footing settlements on sand tend to be

proportional to the inverse of average blow count beneath the footing, it would

be expected from Eqn. 19 that the coefficient of variation of the settlements

e-ualed approximately that of the vertically averaged blow counts.

"I' Mathematically, settlement is predicted by a formula of the form,

. A' q(h) (41)
N

in which o=settlement, Aq=net applied stress at the base of the footing,

N=average corrected blow count, and g(b)=a function of footing width (see,

Lambe and Whitman, 1969). Therefore, by Eqn. 19 the coefficient of variation

of P should be,

= N (42)

In fact, the coefficient of variation of the vertically averaged blow counts is

about 1N=0. 4 4 . The observed values of total settlements for 268 footings have

- mean 0.35 inches and standard deviation 0.12 inches; so, Q,=(0.12/0.35)=0.34.

% Why the difference?

* The explanation is found in estimates of the measurement noise in the blow

count data. Plate 3 shows the horizontal autocorrelation function for the blow

count data. By extrapolating this function to the origin, the noise (or high

frequency) content of the data is estimated to be about 50% of the data scatter

variance. This means tLat,

V.
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(Qsoil)2 = (data) 2  (0.5) (43)

= (0.35)2

which is close to the observed variability of the settlements. Measurement

noise of 50% or even more of the observed scatter of in situ test data,

particularly the SPT, has been noted on several projects (e.g., Baecher, Marr,

Lin, and Consla, 1980; Schmertmann, personal communication, 1986)

In fact, while random measurement error exhibits itself in the

autocorrelation or autocovariance function as a spike at r=O, real variability

% of the soil at a scale smaller than the minimum boring spacing cannot be

*distinguished from measurement error when using the extrapolation technique.

Thus, it need not be that the 'noise' component estimated from the horizontal

autocovariance function in the horizontal direction is the same as that

estimated from the vertical.

For many, but not all, applications the distinction between measurement

fC error and small scale variability is unimportant. For any engineering appli-

cation in which averaqe properties within some volume of soil are important,

the small scale variability averages quickly and therefore has little effect on

predicted performance. Thus, for practical purposes it can he treated as if it

* were a measurement error. on the other hand, if performance depends on extreme

properties--no matter their geometric scale--this unimportance no longer

obtains. Some engineers think that piping (internal erosion) in dams is such a

mode of performance. However, few physical mechanisms of performance easily

come to mind which are stron,1ly affected by small scale spatial variabilities,

V unless those anomalous features are continuour over a larqe extent in at least

one limension.
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be made on the basis of the set of data alone, and on the relation of a

particular measurement to the general characteristics of the bulk of the data.

The decision is ultimately subjective. By throwing out an 'outlier' one may in

fact be throwing out the most interesting piece of information about the soil

or rock formation.

In judging whether an extreme value is real and important or simply an

outlier which can be rejected, statisticians prefer to follow some formal

policy whereby the probability of accepting or rejecting the measurement

erroneously can be calculated. A suitable value for this probability is

* decided upon, and then an explicit rule for rejecting data is derived.

To decide whether to accept or reject an extreme individual measurement, a

common procedure is to use the quantity

Z. - m
1 z (44)

s
z

in which mx and sx are the mean and standard deviation of the set of

measurements zl,...,zn, which includes the suspect value zi. If the z are

Normally distributed, the quantity t should have a student's t distributional

form with V=n-1 degrees-of-freedom. Thus, the probability of an individual

measurement deviating as much from the mean as zi does can be evaluated from

tables of the Student's t distribution (e.g., Benjamin and Cornell, 1970).

*0 Some critical probability level a is chosen, usually U=0.05 or a=0.01, and if

the probability of a deviation at least as large as observed with zi is less

than a, the measurement is rejected. Jsinq this rule, the probability of

rejecting a measurement zi which truly is appropriately part of the data set is
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Considering the outlying measurement in Fig. 35, the test value t equals.

- 12hpf - 3.Sbpf" 't == 3.2 (45)
2.56bpf

in which m=3.Sbpf and s=2.96bpf. Comparing this value to tables of the

Student's t for n=35 data ( =n-1=34 degrees of freedom), the probability of a

deviation as large as observed is about 0.001. Since this value is smaller

than either common criterion =0.05 or =0.01, the measurement is rejected from

the data set. While the outlier test based on Eqn. 44 is exact only for data

that are Normally distributed, it remains approximately correct as long as the

0 data are not highly skewed. Therefore, for geotechnical applications it is

usually satisfactory.

-" A shortcut outlier test, that does not require computing the mean and

standard deviation uses the test value,

JZ
n n- (46)

Zn - z

in which the measurements z1 , z2 , ... , zn are listed in ascending order. The

quantity (zn-zn1) is the interval separating the largest from the second

largest measurement, and (zn -zI ) is the range of the data. Dixon (1953) has

worked out values of corresponding to probabilities =0.05 and =0.01 (Table

2). For a specific outlier to be tested, the value is computed and compared

to the tabulated value for the chosen level.

The test using , however, only works well with small n (e.g., <10). Were

we to compare the 12 bpf measurement only with other measurements in the upper

stratum of the same boring, of which there are 4, then,

-P 6 2
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'-.. .. ... . . w ~. . w = .,r . . . . = n w= ....- w,. .. .- = . .... ww .-- wr..-r..-u-w.- --.

z -zn n-1 12 - 5
z n - z 12- 3 0.77 (47)

which is slightly greater than the critical value for =0.05 and therefore the

measurement is again rejected from the data set.

The critical values of Table 2 also apply to the test of outlier values

to the low end of the data set, using the test value

2 1(48)
z n - zI

in which z2 is the second lowest measured value. As with the t-test-value of

Eqn. 44, the r-value assumes the data set to be Normally distributed.

A problem when evaluating outliers on the low and presumablly

unconservative side of a data set is that the risk associated with incorrectly

rejecting an anomalous measurement must be carefully considered. The decision

to include or reject such a measurement often rests more on geological

. judgement than on engineering analysis.

Size Effect Factor

The volume of soil influenced by an in situ test, or contained in a

laboratory specimen, is small compared with that influenced by a prototype

structure. To make predictions of how the prototype will perform, one needs

to estimate the properties within this larger, representative volume of soil,

and the variability among such representative volumes.

This is done by assuming the representative volume to be composed of a

large number of small elements, for example, each the size of a test specimen.

The mean and standard deviation of the properties of small elements are

J63

i%



evaluated, and then the spatial structure described by the autocorrelation

function is used to calculate corresponding means and standard deviations for

the larger volumes. These calculations are summarized in a size-effect factor,

R, which in many cases can be expressed by simple formulas or carn be graphed.

Spatial Averaging

Empirically, the variability of soil properties among small volumes of

soil, say test specimens, is larqer than that among large volumles, say the soil

* under a footing. Within a small volume, physical properties tend to be more or

less the same throughout. Some individual specimens may have greater than

* average properties throughout while some may have less than average, but within

each specimen there is less variability than there is among the average

* . properties of different specimens. Within large volumes the opposite is true,

there tends to be a mixture of high and low properties in any one volume.

Thus, with small volumes the properties of individual volumes may vary sharply

from the mean across the site, but with large volumes internal variations

balance out such that the average property from one large volume to another

differs very little. The mean of large volumes remains the same as the mean of

small volumes, but the standard deviation of the average property from one

large volume to the next is smaller than the standard deviation of the average

property from one small volume to the next.

The extent of averaging of properties within a large volume of soil

depends on the structure of the spatial variation. More precisely, the extent

* .. K~.of averaging depends on the standard deviation of properties from point to

point and on the autocorrelation function.
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The influence of spatial averaging on the variability among average

element properties can be illustrated by vertically averaging SPT blow counts

" "in boring logs. Plate 4 shows a set of six SPT boring logs. First, one N

value from each boring is randomly chosen and the mean and standard deviation

of the 6 values are calculated. The mean is 3.3bpf and the standard deviation

is 2.5bpf. The mean is about the same as before, but the standard deviation

has gone down. Continuing, the greater the number of N-values for each boring

included in the average, the smaller the standard deviation of the 6 boring

averages. The decrease of the standard deviation of average blow count as the

number of N values included in each average increases is a manifestation of

spatial averaging. The larger the volume of soil (i.e., the greater the number

of values in each average) the more the individual fluctuations balance out.

The same thing happens in averaging soil properties within a continuous

block of soil. The soil properties fluctuate somewhat from point to point, so

the larger the block of soil over which the properties are averaged, the more

the high and low fluctuations cancel out. The extent of spatial averaging can

be measured hy calculating the standard deviation amonq block averages. The

more averaging that goes on within a block, the less variability there is from

one block average to another.

V. For this simple case of averaging individual blow count measurements, the

rate of decrease of the standard deviation as the number of data averaqed in

each boring increases can be approximately calculated. From Part IV, the

O standard deviation of the borino averaqes oiqht to docrease by 1/ k as the

nurjber of .; valies in each borini, k, increases, assin.in that the blow counts

are miitiIly in±jppncie nt (i.e., the correlation cnefficient for each pair is

-.'p.c

.



zero). If the blow counts are not independent, that is, they are

autocorrelated, the standard deviation should decrease less quickly than 1//k.

The data show 'wavy' variations about their spatial mean, and therefore the

balancing out of spatial variations takes place more slowly.

This decrease in the standard deviation of soil properties averaged over

a volume of soil is summarized by a size effect factor, R. For the averaging

case, R is defined as the ratio of the variance of the average soil property

within a large volume of soil to the variance among test-sized volumes,

R = Vm / V N , (49)

in which Vm is the variance of the average or mean property among elements.

The ratio of variances rather than standard deviations is used because it is

more convenient for subsequent error analysis calculations.

The rate at which R decreases with increasing soil volume depends on how

erratic the spatial variations are within a soil element. The more erratic

they are, that is, the shorter their 'wave length,' the more averaging that

takes place within a given volume of soil. That is, the extent of averaging as

reflected in R depends on the autocorrelation function of the soil properties.

The simplest (hypothetical) case occurs when a block of soil is thought of

* as composed of k smaller elements, each one of which has internally uniform

soil propertise which are statistically independent of the properties of the

other k-1 elements. Let the mean of the individual element properties be mx

and their standard deviation be sx . In this case the average property within

-7 the block is,

'

M = (1/k) Z xi (50)

%66
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and the standard deviation of the average mB among blocks is calculated by Eqn.

16 as,

/ d/
/ dB]2 Vx

Bdxi

(51)

sx/k

So, as the number of elements in the block k goes up, the standard deviation

among block averages goes down as 1//k. This is approximately what happens in

Plate 4, in which the SPT values show little vertical autocorrelation.

e'
In any practical case, the soil block is not divided into discrete

elements but is a continuum. The 'waviness' of soil property variations within

the continuum is described by the autocorrelation function. Knowing the

autocorrelation function, the exact shape of the relation of R to soil volume

can be calculated in much the same way Eqn. 49 was calculated.

The size effect factor R for spatial averaging of soil properties along a

line is shown in Fig. 36. Three common mathematical expressions are often used

to model the decay of autocorrelation with separation distance, that is, the

autocorrelation function: the exponential-squared, exponential, and power

curve. These expressions are chosen as typical of the models used to

analytically summarize autocorrelation. The size effect factor R differs among

the three models for short lengths of averaging, but approaches an asymptotic

...

value,

26
P"L0 (52)
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as 1. becomes large. The parameter o is the autocorrelation distance, the

distance at which autocorrelation decays to lie, in which e is the base of the

natural loqarithms.

Fiq. 37 shows the size effect factor R for spatial averaging over a two

C dimensional square. Fig. 38 shows R for spatial averaging within a three

dimensional cube. Roth Figs. 37 and 38 are based on isotropic

autocorrelat ion.

For spatial averaging of soil properties over other shaped surfaces,

within other shaped volumes, or for other autocorrelation functions (e.g.,

anisotropic autocorrelation), the size effect factor R can be easily calculated0
using numerical simulation. This requires a programmable calculator or a small

computer, but is simple. The procedure for calculating R for arbitrary

geometries or arbitrary autocorrelation functions is the following:

1. Specify an analytical expression for the autocorrelation function in
the desired number of dimensions.

2. Using a random number generator, randomly choose two points within
the geometric volume to be averaged over.

3. Calculate the correlation between the soil properties at these two
points from the autocorrelation function.

4. Repeat this process many times, at least 100.

5. Sum the correlations obtained in the simulations and divide by the
number of simulations (find averaqe correlation coefficient). This

is an estimate of the size effect factor R.

6. The numerical precision of R calculated by simulation has a standard
deviation equal to the standard deviation of the simulated
correlations divided by the square root of the number of repetitions.

0e.
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Spatial Extremes

* The importance of spatial variability on calculated predictions depends

not only on the volume of soil influenced but also on the mode of performance.

For modes of performance which depend on average soil properties, spatial

variability partially averages out, as 'escribed above. However, for modes

which depend on worst condtions, for exam, e sliding along a discontinuity or

internal erosion in a dam, spatial variability is accentuated. In this latter

case the size-effect factor may be greater than one, and an alteration may be

caused to the mean. These cases are outside the scope of the present report.

..- .*:
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Table 2. Frequency Distribution of Test Statistic for Outliers Based

on Range (after Dixon, 1953).

Critical values of the test value

zn zn-i
z n-z1

Sample Size Critical Values

n -0.05 =0.01

3 0.941 0.988

-~4 0.765 0.889

5 0.642 0.780

6 0.560 0.698

a7 0.507 0.637

* Abstracted from Dixon (1983)
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PLATE 3

SUBJECT: Analysis of Noise in SPT Blow Count Data

Site Conditions

The site is underlain by fine dry sand to a depth of 10m. Fifty SPT
borings were made across the site and a limited number of laboratory
tests were run to correlate blow count with friction angle. The

trend of depth-averaged blow counts corrected by Gibbs and Holtz's
method is shown below. The mean of the depth averaged SPT blow
counts in the upper levels is 25bpf; the standard deviation is
15.5bpf. Laboratory tests on specimens recompacted to the in situ
relative density led to an average friction angle of 36.40, and a

standard deviation of 1.1.

1.0 0

noise 50% of data scatter

SPT BLOW COUNTS 0.5
AU TOCO RRE LAT ION

FUNCTION

1%

0.0------I....I .----- I-

'71)
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r:::.:. -0.5s -
100 Lo 200 300 400 500 600 700Ui SEPARATION DISTANCE (ft)

'.N4,
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PLATE 4

4SUBJECT: Spatial Averaging of SPT Blow Count Data

BORING # 1 2 3 4 5 6

DEPT H - - - - -- - - - - - -- - - - - -- - - - - -

12 1 2 8 3 4

2 3 8 5 3 7 4

*3 8 6 5 3 7 5

4 6 6 7 0 8 7

5 0 2 5 2 5 0

6 3 2 4 1 9 4

7 3 5 0 0 4 1

8 8 3 0 8 8 7

Average and standard deviation of average of n=1,2, and 8 data:

n =1I m = 3.3 3-
Sm =2.5

n =2 mN = 5.7 2
Sm = 2.0 Sm

n =8 mN = 4.2 1
5m = 0.9

0

number of N-values averaged
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Figure If) -Spatial Data Displaying: (a) Trend With Location,
(b) Erratic Variation With Location.
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MAXIMUM PAST PRESSURE , T'M (KSF)
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Figure 11. Maximum Past Pressure Data as a Function of Depth.
Line marked "I" shows mean with depth. Solid line at left shows
In situ effective vertical stress. Symbols refer to different
measurement procedures.
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1.0

0.5-

* rk 0- -
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lag k

(Lag distance 0.5")

0

Figure 21 * utocorrelation Function of Water Content Over Snail Interval

of San Francisco Bay Mud (after Javette, 1983). ,layette, ues

the svmbo l r for autocorrelation, ,and expresses distance in

lags (i.e., intemrvals) of 0.5 inch.
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Figure 22. Autocorrelation Function of Water Content Over Large Interval
of San Francisco Bay Mud (after Javette, 1983). Javette uses
the symbol r k for autocorrelation, and expresses distance in
"lags" (i.e., steps), here of 25 ft.
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Figure 24. Autocorrelation Function of Rock Joint Density in A Copper
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Fiqure 26. Autocorrelation Function of Cone Penetration Pesistance in

North Sea Clay (after Tanq, 1979).
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Fiqjure 31a. SPT Blow Count Data in a Dune Sand (after H-illciale, 1971).
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PART IV: SYSTEMATIC ERRORS

Thus far the analysis of uncertainties has concentrated on data scatter.

It was seen that data scatter uncertainties manifest as variability across a

site, for example, variability of settlement from one footing to another.

Another type of uncertainty is also important: systematic error.

Uncertainties due to systematic errors do not manifest as variability across

the site, but appear as a difference between the predicted averaqe performance

and the average performance that occurs in the field. Systematic errors are

biases. Usually they occur because errors are introduced in estimating mean

values of soil properties, loads, or other input variables.

Sources and Importance of Systematic Error

The most important sources of systematic error in soil property estimates

are measurenent bias and statistical error. Measurement bias is caused by

inadequacies in the way soil test results are obtained or Interpreted. For

example, the stress systen imposed on a soil specimen during testing often

differs from that encountered in a prototype situation. To the extent that

strengths or other properties are affected by this difference in stress system,

values calculated from test results will be inappropriate for predictions of

prototype performance.

Statistical errors are due to limited numbers of tests. Because no two

test results are ever the same, variations from one set of results to another

cause variations from one sample mean or sample standard deviation to another.

These variations go down as the number of measurements in a sample goes up, but

they are always present. A sample statistic such as the mean or standard

deviation always varies somewhat from the corresnondinq actual value across a

soil deposit.

.. ,.%.
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The importance of drawing a distinction between data scatter

uncertainties and systematic errors is that the two affect predictions in

different ways. For example, spatial variation affects the fraction of a

large project, e.g., a lonq embankment, that might perform adversely. If

spatial variation indicates a 10% likelihood of adverse performance, this means

that problems should be expected with 10% of the embankment. On the other

hand, systematic error affects the likelihood that the entire project performs

adversely. If systematic error indicates a 10% likelihood of adverse

performance this means that problems with the whole embankment should be

expected in one out of 10 projects. The distinction between data scatter and

systematic error is important.

A second difference between spatial variation and systematic error lies in

the way they are affected by scale. If a very large volume of soil is

considered the uncertainty in average soil conditions may not be greatly

affected by spatial variation. Above average elements of soil balance against

below average elements. This averaging does not affect systematic errors.

They are the same everywhere.

It is often convenient to think of spatial variation as the uncertainty in

soil properties caused by variations from spot to spot in a soil deposit.

Systematic errors are uncertainties about the value of the mean or trend in

soil properties.

Measurement and Model Bias

Tn testing soils, whether in the field or laboratory, a system of

boundary conditions is applied to a specimen and response is measured. From

this response and a set of physical assumptions (i.e., a model), soil

108
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properties are calculated. These properties are used with another model to

predict performance. Non-random errors are introduced to this process at

several points, and it is these which give rise to measurement bias. These

non-random errors have systematic and variable parts. The systematic part is

P said to be a measurement bias. The zero-mean variable part is lumped with

measurement noise and therefore can be treated as a random error. As a

result, bias does not appear in the data scatter, it is a purely systematic

error. Fig. 28 illustrates the distinction between systematic and random

errors in measurements.

Causes of Measurement and Model Bias

Among the more common measurement errors in soil properties are (a)

inappropriate boundary conditions, (b) inappropriate model assumptions, and

(c) sample disturbance. In most cases there is little reason to separate

measurement bias from model uncertainty. First, measurements and models are

-often inseparable, and second, the best way to assess measurement bias is to

backcalculate 'correct' parameters by modeling observed failures--thereby

combining the effects of errors of measurement and errors of modeling.

Assessing Magnitude of Bias

The direct way to establish measurement bias is by comparing

predicted and observed performance. For field vane strengths Bjerrum (1972)

compared observed slope performance with predictions based on modified Bishop

analysis and backcalculated the correction factor,

ci, for F=1 at Failure (53)
c. measured with F;

6 %109

I

(.{*****t



in which cu = undrained strength ani F =factor of safety. The correction

factor reconciles observed failures with predictions (Fig. 39). This bias

factor combines measurement technique and prediction model and is no lonqer

appropriate if a stability model based on other assumptions is used (e.g., a 3D

model).

Introducing a measurement/model bias B into Eqn. 38 leads to the

statistical model,

z = B x +e ,(54)

and the summation of variances,

Vz mB3 V + mx VB + Ve '(55)

in which VB is the uncertainty in the value of the bias correction B, and

all parameters are valued at their means. In the special case where field vane

measurements were used as input to modified Bishop analysis, B=(1/ )

Statistical Error

~*1 Sampling Variations

Because a limited number of measurements are made at any depth, about 40

in Fig. 32, their average may be above or below the actual spatial average

made at slightly different locations, the exact test results would have been

slightly different from those obtained here, and a slightly different estimate

of the average, standard deviation, and other parameters would have resulted.

Thus, the average vane strength at any depth as shown in Fig. 40 probably

110
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differs somewhat from the (actual) spatial average that would be obtained from

a very large number of measurements. That is, the estimate of the average is

somewhat in error. To the extent the estimate is in error, this error is the

same everywhere along the axis. It is a systematic error.

Statistical theory allows an assessment to be made of the probable

magnitude of error that results from limited numbers of observations. One

never knows, before hand, the exact magnitude or direction of this statistical

error, but the likely range of magnitudes can be calculated. Typically,

.~ ~m'statistical error is expressed as a variance or standard deviation on the

estimated parameter. For example, the statistical error on the estimate of the

average field vane strength at any depth in Fig. 40 would be expressed

as a variance on the estimated average, VmF,, in which m, is the estimate

of the mean FV strength. The corresponding standard deviation of the estimate

is said to be the standard error.

The larger the number of measurements at any depth, the lower one might

expect the statistical error to be. In general, the variance of the statis-

tical error decreases approximately in proportion to the reciprocal of the

number of observations, n. Doubling the number of tests, therefore, reduces

te standard error of a parameter such as the mean or standard deviation by

about l/ 2. The benefit of increased testing displays marqinally diminishing
returns.

Error in the Mean

From 7qn. 16, the variance of the statistical error of the mean of a

population is approximately,
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= Z (56)
.*X n

"If repeated samples of n tests from the same soil deposit are made, if each of

the tests is statistically independent of all others, and if for each sample

the mean is calculated, then the variability of those means would have variance

Vx/n.

Settlement of footings on cohesionless soils is often estimated to depend

inversely on the averaqe SPT blow count immediately beneath the footing as, for

example, through an equation of the form of Eqn. 41. If only one .;PT test is

* taken beneath the footing, the variance of the average N from one footing to

another is, obviously, VN. If more than one test is made and the results

averaged, then the variance among the averages decreases, as can be seen in

Fig. 41. As the number of tests n increases, this variance reduces as 1/n.

This sampling variance of the estimate of the mean is not the uncertainty

of the estimate directly, but the variation one might expect to see in

repeated sampling from the same deposit. Nevertheless, under fairly general

conditions this variance is close or identical to the so-called 'Bayesian'

variance of the parameter which expresses the uncertainty directly.*

Eqn. 56 refers to the case in which measurements are statistically

independent of one another. When the measurements are not independent, Eqn. 56

* More precisely, the posterior variance on mx in a Bayesian sense is Vx/n, if

the prior distribution on m× is uniform and V. is known. If Vx is unknown and
IW the prior distribution on (mxsx) is noninformative ( 1/sx), then the marginal

posterior variance on mx is somewhat larger.
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must be modified. The most common case in which measurements are dependent

occurs when the spacings among the measurements are small, so that auto-

correlation comes into effect. From Eqn. 15, the variance of mx accounting for

dependence among the measurement x i is

I
Vmx = -2 C (57)

n

in which Cxi,x j = covariance between the measurements xi and xj. The

individual covariances can be estimated from the autocovariance function

evaluated at the appropriate separation distance. For computer applications a

more convenient matrix version of Eqn. 57 is

I, tc  (58)
Vmx n =n

in which 1/n is a vector of dimension n, each element of which is 1/n, and C,

is the covariance matrix of the observations. The ijth element of C is

Cxi,x j . If the measurements are widely spaced, Eqn. 58 reduces to Eqn. 56. In

fact, in most practical applications Eqn. 56 is used unless the measurements

are made very close together in space.

Error in the Standard Deviation

'N. The variance of a soil property is usually estimated by the sample

variance,
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This is an unbiased estimate of Vx the soil property variance, and has

samplinq variability characterized by,

2 V
x9

V x V (60)Vsx n-1

Eqn. 60 is exact when the data are Normally distributed, but only approximate

4.. otherwise. The uncertainty in the standard deviation of x is characterized

approximately by the standard deviation.

s s  Sx/ n (61)
x

Again, Eqn. 61 is exact for Normally distributed xi, but only approximate

otherwise. More detail is provided by Duncan (1974). For most purposes the

uncertainty in sx can be ignored in developing a design profile. For example,

the sample variance of the data of Fig. 32 is about (10kPa) with a sample size

of n=40 at any elevation. Thus, the standard deviation of sx from these data

is approximately 1.1 kPa.

Error in Regression Coefficients

The estimates of slope and intercept coefficients in regression analysis

are mathematically defined functions of the measurements from which they are

inferred (i.e., x = xi, ... , xn), and thus the statistical error in these

estimates can be calculated to a first-order approximation by methods given in

Part II,

V =and (62)
a n( xi )-( xi)

n VI (63)V b =n( x i )-( xi)
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in which Vu = the variance of the residuals about the regression line (Eqn.

23).

The location of the regression line represented by the equation,

y = a + bx + u (64)

is predicted at any point x by inserting the estimates of the regression

coefficients a and b . The uncertainty in the location of the line at any

svalue of x is found by first-order approximation to be (Eqn. 15),

Vm = V + Vb (x - m ) (65)
*O mx a b

in which Vmyjx is read, 'the variance of the mean of y given the value of x.'

This is shown in Fig. 43 for the data of Fig. 42. These standard deviation

envelopes represent uncertainty of the regression line, that is, of the mean,

not of the location of individual measurements which vary about the line. The

uncertainty on the residuals about the mean trend is expressed by Vu. Taken

together, the standard deviation envelopes expressing the uncertainty on the

magnitude of an individual measurement, accounting both for uncertainty on the

p mean trend and on residual variation about the mean trend, is,

Vyx Va + Vb(x - rx) + V u (66)

This is read, 'the variance of y qiven the value of x,' and is shown as the

outer envelopes in Fig. 41.
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PART V: CONSTRUCTING A STATISTICAL SOIL ENGINEERING PROFILE

This final part presents the procedure for combining best estimates of

soil properties and uncertainty about those estimates into a statistical soil

property profile.

The design profile summarizes available information on the variation of

soil properties with depth. Specifically, the design profile gives,

A best estimate of soil properties with depth, and

Uncertainty envelopes about the best estimate.

* These envelopes show the magnitudes of two types of uncertainty in the soil

property estimates. The first set of envelopes shows spatial variability of

soil properties about their mean. The second set shows uncertainty or error in

the mean itself. Each set of envelopes shows a +/- one standard deviation

interval.

Decomposition of Uncertainty

The methodology presented in this report is based on a decomposition of

uncertainty in soil property estimates. In a statistical profile, the sources

of uncertainty which have been analyzed and quantified separately are now

brought back together.

Uncertainty in soil property estimates have been divided into four

components: (i) real (spatial) variability of the soil deposit, (ii) random

measurement noise, (iii) statistical estimation error, and (iv) measurement or

model hias (Fig. 44). The overall error in an estimate of soil properties at

any one point in the soil profile is found by combining the individual

contributions of the four sources.

121

0



The contributions are mathematically combined by taking advantage of a

convenient result from probability theory, that the variances (i.e., the

squares of the standard deviations) of the individual contributions are

additive (Cf., Eqn. 15),

Vspatial variation

Vdata scatter +
Vmeasurement noise

Vx = + (67)

I Vstatistical error
Vsystematic error +

Vmeasurement bias-

Vx Vspatial variation (68)
+ Vmeasurement noise

+ Vstatistical error

+ Vmeasurement bias-

in which Vx = the total uncertainty in an estimate or prediction of soil

property x, expressed as a variance.

In separating spatial variability and systematic error, it is easiest to

think of spatial variation as scatter about the trend and to think of

systematic error as uncertainty on the trend itself. The first envelope

reflects soil variability after random measurement error is removed. The

second envelope reflects statistical error and measurement bias.

Rearranging Eqn. 66, the variance of a soil property x is related to the

variances of data scatter, measurement error and measurement bias by,

122



V =-(V - V ) + Q2m 2(69)
x 2 z e B x

m
B

The additional uncertainty contributed by statistical error in mx adds to the

right-hand-side (RHS) of Eqn. 69 the term Vmx of Eqn. 56. The total variance

in point to point values of x is thus,

V - V Vz 2 e 2 2 V zV :+ m Q+- (70)
x 2 x B n

B

The first term on the RIIS is the contribution of spatial variation to Vx . The

second term is the contribution of uncertainty in measurement bias. The third

term is the contribution of statistical error. Taken together, the second and

third term are the systematic error in x, or the error on the mean value. The

first term is the additional uncertainty due to variation of the soil from one

location to another.

Note that the contribution of random measurement error Ve appears only in

its effect on statistical error. Thus, in specific instances--e.g., if VB is

small and n is large--the variance in x, Vx, can be much less than the data

scatter variance Vz.

~Simple Soil Profile: Field Vane Data

This example illustrates the construction of a design profile for the

case in which in situ test results are used directly to estimate soil

0:- properties.
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Site Conditions

The facility was a long water retaining embankment constructed on

approximately 20m of soft marine and lacustrine clays. Field vane data were

collected at every Im of depth in 27 borings (Fiq. 32) , and were scattered.

The scatter in the data varied with depth, but had a coefficient of variation

ranging from 18 to 45%.

Horizontal and vertical autocovariance functions for the Marine clay are

shown in Figs. 33a and 33b. Extrapolations to the origin indicate that about

40% of the data scatter variance in the marine clay can be attributed to noise,

however, little of the scatter in the lacustrine clay appears to be noise.

4This difference may be due to small scale variability of the marine clay rather

than measurement error, or may be due to other differences between the two

clays, as e.g., in plasticity index or sensitivity. The resulting separation

of data scatter expressed as coefficients of variation is given in Table 3.

Systematic Error

Systematic uncertainty on the mean strength derives from two sources,

statistical error due to limited numbers of tests, and measurement bias due to

differences between the field vane strength and the actual strength mobilized

in embankment failures. Statistical error can be calculated approximately as

Eqn. 56, which assumes the tests to be independent. Given the separation of

thc tests is larger than the autocovariance distances, this assumption seemed

satisfactory.

Field vane correction factors, were used to account for measurement

bias. These were estimated starting from Rjerrum's chart, Fig. 43, and back

calculating strengths from local dyke failures. Uncertainty in the correction

L24



factors were estimated by judgement and inspection as shown in Table 3. Due to

a lack of laboratory strength and consolidation data at depth a site specific W

was not developed for the lacustrine clay.

Statistical Soil Engineering Profile

The resulting statistical soil engineering profile is shown in Fig. 45.

The best estimate undrained strength with depth is the mean undrained strength.

The inner envelopes show ± one standard deviation due to spatial variation.
'

The total uncertainty in the value of undrained strength at any point,

* expressed as a variance is found by adding the variance due to error on the

mean to the variance due to spatial variation. A standard deviation envelope

on the total uncertainty in estimating soil properties at a point is found,

correspondingly, by taking the square root of the sum of the squared standard

deviation envelope on error in the mean and spatial variation.

In Part III, a size effect factor R was introduced tr account for the

averaging out of spatial variation in a large volume of soil. For design use

this size effect factor R is applied to the spatial variability part of the

soil property uncertainty. The uncertainty in average soil properties in such

a volume of soil is found by reducing the spatial variance contribution by the

factor P, and adding this to the variance in the mean. This has been done for

the profile of Fig. 45 to obtain Fig. 46. This figure shows the best estimate

(mean) prol ile with t one standard deviation envelope appropriate to different

size failure surfaces throuqh the clay for the purnoce of limit equilibrium

stahility anralysis. Then-e envelopef are obtained ao,
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m / ,

s R s + s'- (71)
average soil / spatial mean
property along variability

-'" failure surfaces

In design, the statistical soil engineering profile of Fig. 46 is the starting

point for error analysis, as described below.

Simple Soil Profile: SPT Data

The second example illustrates a case similar to the first, except that

the site lies on silty-sand alluvium which was characterized by standard

penetration testing.

Site Conditions and Data Scatter

The facility was a low water-retaining rockfill embankment associatd with

a large multiple-use water resource project. The foundation profile consisted

of approximately 25 feet of alluvium in which a large number of borings were

made (Fig. 47). The horizontal sample autocorrelation function for the SPT

data, shown in Fig. 4R, indicated little measurement noise. The supposition

Awas that lack of significant noise in the data was due to the looseness of the

4", soil and the low average blow count. The data scatter varied somewhat with

depth, giving a coefficient of variation of about 32%.
S

Systematic ErrorFL Pecause the 2PT data are used directly, that is, they are not translated

into a fundamental soil property such ar strenith or deformaility, no

measurement bias term was usod in devolopinri a statistical soil property

profile. The profile is expressed directlv as SPT results. The statistical

4



error in the estimate of the mean SPT blow count at any depth interval was

calcuated a per Eqn. 56. This is shown in Plate 5.

Statistical Soil Engineerinq Profile

The resulting statistical soil engineering profile is shown in Fig. 49.

This profile wao constructed according to Eqn. 70. The vertical bar in each

case shows mean water elevation plus or minus one standard deviation of spatial

and temporal variability.

Derived Soil Profiles

The foregoing case illustrates the construction of a design profile for

calculations directly relating field measurements to model parameters. Not

all situations are direct in this way. Many involve profiles derived from

field measurements, as for example, when using normalized soil properties

(e.g. , the TIANSEP approach of Ladd and Foott, 1974). such a derived

soil profile was used in analyzing an ore stockpile on soft Gulf of Mexico

('lay.

l'ite Conditions

Tho facility was an industrial plant sited alonq a harqIe canal on 15 m of

normally con-,olidated clay. ores for processing are shipped up the canal and

stockpiled next to a dock. qtrenqth data for the site taken by field vane

tent inj are scattered, as are maximum past pressure mea.surrments (Fiq. 50).

Thiz lea is t,- un-oertainty in factors of safety ag.iinst strenith instability.

Then rrt n t.', er factor of safety, in turn, leals to incertaintv on how high

0-4
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can be built before strenoth increases from consolidation are required to

provide strength stability.

Normalized Soil Properties (STIANSEP)

The field vane data are too few and too widely spaced and too scattered to

confidently estimate soil properties. Therefore, the decision was made to base

stability predictions on normalized soil properties, and to determine the

calibratinq constants from measurements made in the laboratory.

The S1{ANSEP procedure was adopted which relates undrained strength cu to

in situ stress through thP equation,

• c
k H(72)

' vM Vs
vo

in which 'I effectivp vertical stress, '' maximum past pressure, and

Vo vm

k = cu /vm normally consolidated (73)

k is the undrained strength ratio for normally consolidated clay. The

parameters k and g are considered material constants, and [01 /o = OCR is
vm vo

the over-consolidation ratio.

* Applying Eon. 19,

i In (74)

"Ck N. ,v .. vrM

le % %

A- ,



providing a linear composition of the uncertainties on each of the three soil

* parameters, k,q, and a,
vm

Soil Data

One dimensional consolidation tests were made on specimens recovered in

* piston samples at the site. Maximum past pressure estimates cGvm' from these

tests are shown in Fig. 11. The trend of Gam1 with depth was approximated by

fitting a re'jressiom line to the data using Eqns. 20, 21, and 22. The least

squares fit is shown in Fig. 11. The data scatter about the regression line

was estimated using Eqn. 23 to be sx=lksf.

Laboratory direct simple shear tests were performed to determine the soil

.1

parameters k and q for the undrained strength model of Eqn. 72. The results of

these tests are shown in Fig. 51. From the test results and judgemental

interpretation the best estimates and standard deviations of q and k were

concluded to be

'1 0.86 5 q 0.03

(75)

mk 0.21 sk 0.22I

s ecause the measurements of q and k were made with care in the

laboratory, and because too few data were available to estahlish the stricture

of spatial variation in an autocorrelation function, measurement noise was I
tahsseri In he zero. That is, the assumption was made that Vd for the soil

parinetor astimate q and k. This assumption is conservative in that

lncrti itvi.; ovor estima ted, but the extent of conservatis 15lwas5 tholit to) bo

Tmal,. r.ili5Q of limite-d data on -3m the same asrmript; n that V,= was male

f-r etitsof maximum Past ressure.]

%i

concludd to b

,&q = 0.8 Sq = 0.0



Systematic Errors

Statistical errors in o and k were estimated from Eqn. 56. There is

slight correlation in the estimates of q and k, because q is measured by the

increase of normalized strength cu/G' with OCR, starting from k at OCR=1.0.

This correlation turned out to be small and was neglected. Statistical error

in the trend of rjvm' with depth was estimated from the regression analysis

using Fqn. 65. Plus/minus one standard deviation envelope on the mean of Uvm'

with depth are shown in Fig. 11. Measurement and model bias errors were

estimated subjectively, based on experience with the SHIANSEP procedure and on

the quality of the laboratory testinq program.

Statistical Soil Engineering Profile
-"U

The resulting statistical soil engineering profile is shown in Fig. 52.

The best estimate of undrained strength with depth is the mean. The inner

- envelopes show plus or minus one standard deviaton of error on the best

estimate or mean. The outer envelopes show plus or minus one standard

4 "deviation of the spatial variation in undrained strength about the mean trend.

The statistical profile was developed from Eqn. 74 by separately estimating

spatial and systematic components for each of the three terms on the RHS,

corresponding respectivp-ly to uncertainties in k, u', and q (Plate 6). The

three spatial contributions were added to get the total spatial variability,

and the three systematic terms were added to get the total systematic error.

In essence, Eqn. 74 and the division of uncertainty into component types

provides an accounting format for keepinq track of where uncertainties or

errors originate and how they logically combine.
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In this project too few data were available to confidently assess

autocorrelation functions from field data. As a result, the size effect

summarized by the factor R could not be precisely quantified. Therefore, the

final statistical profile shows only the limiting cases of spatial averaging:

-° the case of very small failure surfaces for which R= .0, and the case of very

large failure surfaces for which R*0. If a subsequent error analysis shows

that this range of uncertiantiy is too large to be dealt with in design, then

more data would have to be gathered.

Error Analysis

The end result of the statistical data analysis presented in this report

is a statistical soil profile summarizing data scatter and estimates of

systematic error. The design profile gives a best estimate of soil properties

- with depth and two sets of standard deviation envelopes, one on the mean and

one on spatial variation.

The next step is to incorporate this statistical characterization of soil

property information in design calculations. That is, to use means, standard

deviations, and correlations of soil properties as the input to geotechnical

modeling. The result of that modeling is a best estimate or mean prediction of

engineerinj performance, accompanied by a standard deviation on the prediction.

The techniques for accomplishing this are presented in the companion report,

"Error anaIysis for geotechnical engineering," (Contract RPport 3)I-'+:7-3).
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,able 3

Summarv of Parameter Estimates for Error Analysis of Fnd-of-
Construction Stability Analyses for An Embankment on Soft Clay.

Field Vane Statistics

T9 i Marine Lacustrine

Mean, kPa 34.5 31.2

Data Scatter, )° 0.236 0.272

Spatial Variability, 0.183 0.272

Measurement Noise, <oe 0.149 0.000

Systematic Error

Statistical, qmx 0.030 0.045

Correction factor, 'h 0.075 0.15

TOTAL Rias, mxi 0.08 0.16

x, OTAL 0.20 0.29

Table 4

Soil Profile Uncertainties for Error Analysis

Variable Expected Value VarianceSSpatial Systematic TOTAL

depth of crust. 4m q(96 0.036 1.0

depth to till 19.5m 0.0 1.0 1.0Ifill defnsity 20 kII/ml 1.0 1.0 2.0
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PLATE 5 Page 1/2

SUBJECT: Statistical Soil Enqineering Profile for SPT Data

.%

DESIGN PROFILE:

(I) DATA SCATTER: SPT

Station 4+00--13+00 17+00--24+50 25+00--32+00

mean (bpf) 4.8 6.9 8.9

standard deviation 2.9 2.8 4.4

coefficient of 0.60 0.41 0.49

variation

Measurement Noise -- -- --I ' (From Figures 4.6, 4.7)

Spatial Variability 2.9 2.8 4.4

/V[xl /(V[z]-V[e])

S

-4!

-0:
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PLATE 5 Paqe 2/2

(2) SYSTEMATIC ERROR

Station 4+00--13+00 17+nn--?4+50 -, -- +

number measurements* 14 11

per depth interval

Statistical Error 0.78 n.84

/V[m x ] = VV[ z]/n

Model Bias n/a n/a n/a

Total Systematic Error 0.78 0.84 0.q8

* (varies with depth, numbers are representative)

(3) DESIGN PROFILE

(Shown as Figure 49)
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Figure 44. qources of Error or Uncertainty in Soil Property Estimates.
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APPENDIX A: STATISTICAL CONSIDERATIONS IN ESTIMATING AUTOCOVARIANCE

ESTIMATION OF AUTOCOVARIANCE FUNCTIONS

This appendix briefly discusses alternative statistical approaches to

estimating autocovariance functions from soil data. Detailed presentation of

mathematical procedures and statistical properties of the techniques are

presented in Spikula (1983) and DeGroot (1985).

Three techniques are commonly used to estimate autocovariance functions in

the analysis of site characterization data: the moment estimator, the BLUE

minimization estimator, and the maximum likelihood estimator. These have

different strengths and weaknesses, and may lead to slightly differing results.
- J

Moment estimator

The moment estimator uses the autocovariance function calculated directly

from the observed measurements as an estimator of the autocovariance of the

underlying spatial process:

CZ = (- ) (zi-mz) (zi+5-mz) (Al)

in which n 5  the number of data pairs at separation distance 6.

-LUF minimization estimator

* OThe PLITPE minimization uses the autocorrelation function that minimizes the

squared error between estimated and Thserved soil properties at the measurement

points as an estimate of the autocovariance of the underlying spatial process.

That is, soil properties are estimated at each of the observed points by

removing Lhat measurement from the data base and using the remaining (n-1) data

to estimate it using a best linear iunbiased estimation (PT,1A) toc(hniquo

Al



(Spikula, 1)93). That autocovariance function which minimizes the variance of

the error between observed and predicted measurements is taken as the estimate.

This is a parametric model in that the mathematical shape of the autocovariance

function rn,.st he specified.

'aximum Likelihood Estimator

The maximum likelihood estimator uses the autocorrelation function that

maximizes the conditional probability of the measurements actually made (i.e.,

the 'likelihood' ) as the estimator of the autocovariance of the underlying

spatial process,
-',

- rz(r) .t.: min Tf I, z = min MN(3x C (A.2)

C,(r) Cz(r)

in which l[z] the likelihood or conditional probability of the vector of data

z, MN() = the multiNlormal probability density function, = a vector of

regression coefficients for the mean trend of the data, x = the matrix of

location coefficients each row of which is <1,xi,xi2,xi 3 ,... ,xik > where k is

the order of the reqression surface, and . = the covariance matrix of the

observations calculated via the autocovariance function (DeGroot, 1985). This

is also a parametric model.

4.

4:.-
Comparison of Estimation Techniques

The moment estimator technique is by far the most commonly used approach

in present (19P5) practice, but it has statistical limitations. The advantages

of the moment approach are that it is mathematically and conceptually easy to

use, and that it requires relatively modest computations. The disadvantages

are that it is statistically biased and inefficient, and it is difficult to use

when data are not sampled on uniform grids.

A2

OM

M0

- ~ ,,4~%



The BLUE estimator technique has not been widely used in geotechnical

engineering, but it is common in mining engineering and 'geostatistics.' Its

principal advantages are that it is more flexible than the moment estimator in

making use of non-uniformly sampled data, and it requires less intuitive input.

Its principal disadvantages are that it is computationally intensive and its

statistical properties ar± poorly studied.

The maximuT ikelihood estimator is not widely used in either geotechnical

engineering c. rmining, but it is increasingly common in other areas of statis-

tical data processing (e.g., in time series analysis and signal processing).

Its major advantage is that its statistical properties are well known and

desirable (e.g., it is asymptotically unbiased and efficient), and it easily

accommodates non-uniformly sampled data. Its major disadvantage is that the

computational algorithms required to use the method are complicated, although

not intensive of computer time. This disadvantage can be overcome using

packaged programs.
A.

Packaged computer programs are available for each of the three methods of

estimating autocorrelation functions. Most can be tailored to run on present

microcomputei s.
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APPENDIX B: SYMBOL LIST

a,b = regression coefficients
ai  = constant

B = measurement bias correction coefficient

b = footing width

Cf = cost of failure

CR = risk cost

Cx(6) = autocovariance function for separation distance 6
C x y  = covariance of x and y

Cx  = covariance matrix

CREc = virgin compression ratio
CRFr = recompression ratio
cu = undrained strength
d = embedment depth of footing
D,d = geometric properties of scatter graph

e = random measurement error

fi = cumulative frequency of observation i

E = elastic modulus

F = factor of safety

FV = field vane

G = matrix of derivatives with ijth element dyi/dxj
g(x) = deterministic function of x

H = horizontal load

H,h = geometric properties of scatter graph
H i  = stratum thickness

h = SHAN5SEP strength parameter
i = dilation angle
k = counter number
m x  = mean of x

n = number of measurements
L = length

L[z] = likelihood of z

mv  = vertical compression coefficient

N = SPT blow count

Ny = bearing capacity factor

OCR = overconsolidation ratio

PBC = probability of bearing capacity failure
Pf = probability of failure
PQ = probability of excessive settlement

Pr(.} = probability of
q = SHANSFP strength parameter

q = applied footing stress

qvo = design stress
qv = bearing capacity
rxy = correlation coefficient of xy
ro  = auitocorrelation distance, C.(ro)=l/e

R = size effect factor
Rx(6) = autocorrelation function over separation distance 6

sx  = standard deviation of x
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APPENDIX B: SYMBOL LIST

(continued)

t = Student's t statistic
ti  = trend

u = residual variation about regression line

V = vertical load

V x  = variance of x

wx  = range of x

x = soil property

x = vector of data xl,...,x n
xi, = ith measurement of property x, or x at location i

Xmax = largest value of x

xmin = smallest value of x
x0.25 = 25th fractile of x

x0. 5) = 50th fractile of x

x 0 .7 5  = 75th fractile of x
y = predicted performance variable

yo = design specification on variable y
z = measured soil property, depth

a = critical probability level

3 = reliability index

= vector of regression coefficients
y = soil density
5 = separation distance
0 o = autocorrelation distance

, E = strain

_i = point of expansion in Taylor's series

e = slope angle
ii = Bierrum's FV correction factor
V = degrees of freedom

P = settlement
a = stress

Gvm' = maximum past pressure

Uvo' = effective vertical stress
* vf' = final consolidation stress

= effective stress friction angle
2x  = coefficient of variation

w = outlier test statistic
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